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Crop	yield	prediction	is	of	great	importance	to	global	food	production.	Policy	makers	rely	on	accurate	predictions	to	make	timely	import	and	export	decisions	to	strengthen	national	food	security	(Horie	et	al.,	1992).	Seed	companies	need	to	predict	the	performances	of	new	hybrids	in	various	environments	to	breed	for	better	varieties	(Syngenta,	2018).
Growers	and	farmers	also	benefit	from	yield	prediction	to	make	informed	management	and	financial	decisions	(Horie	et	al.,	1992).	However,	crop	yield	prediction	is	extremely	challenging	due	to	numerous	complex	factors.	For	example,	genotype	information	is	usually	represented	by	high-dimensional	marker	data,	containing	many	thousands	to
millions	of	makers	for	each	plant	individual.	The	effects	of	the	genetic	markers	need	to	be	estimated,	which	may	be	subject	to	interactions	with	multiple	environmental	conditions	and	field	management	practices.	Many	studies	have	focused	on	explaining	the	phenotype	(such	as	yield)	as	an	explicit	function	of	the	genotype	(G),	environment	(E),	and
their	interactions	(G	×	E).	One	of	the	straightforward	and	common	methods	was	to	consider	only	additive	effects	of	G	and	E	and	treat	their	interactions	as	noise	(DeLacy	et	al.,	1996;	Heslot	et	al.,	2014).	A	popular	approach	to	study	the	G	×	E	effect	was	to	identify	the	effects	and	interactions	of	mega	environments	rather	than	more	detailed
environmental	components.	Several	studies	proposed	to	cluster	the	environments	based	on	discovered	drivers	of	G	×	E	interactions	(Cooper	and	DeLacy,	1994;	Chapman	et	al.,	2000).	Crossa	et	al.	(1995)	and	Crossa	and	Cornelius	(1997)	used	the	sites	regression	and	the	shifted	multiplicative	models	for	G	×	E	interaction	analysis	by	dividing
environments	into	similar	groups.	Burgueño	et	al.	(2008)	proposed	an	integrated	approach	of	factor	analytic	(FA)	and	linear	mixed	models	to	cluster	environments	and	genotypes	and	detect	their	interactions.	They	also	stated	that	FA	model	can	improve	predictability	up	to	6%	when	there	were	complex	G	×	E	patterns	in	the	data	(Burgueño	et	al.,
2011).	Linear	mixed	models	have	also	been	used	to	study	both	additive	and	interactive	effects	of	individual	genes	and	environments	(Crossa	et	al.,	2004;	Montesinos-López	et	al.,	2018).	More	recently,	machine	learning	techniques	have	been	applied	for	crop	yield	prediction,	including	multivariate	regression,	decision	tree,	association	rule	mining,	and
artificial	neural	networks.	A	salient	feature	of	machine	learning	models	is	that	they	treat	the	output	(crop	yield)	as	an	implicit	function	of	the	input	variables	(genes	and	environmental	components),	which	could	be	a	highly	non-linear	and	complex	function.	Liu	et	al.	(2001)	employed	a	neural	network	with	one	hidden	layer	to	predict	corn	yield	using
input	data	on	soil,	weather,	and	management.	Drummond	et	al.	(2003)	used	stepwise	multiple	linear	regression,	projection	pursuit	regression,	and	neural	networks	to	predict	crop	yield,	and	they	found	that	their	neural	network	model	outperformed	the	other	two	methods.	Marko	et	al.	(2016)	proposed	weighted	histograms	regression	to	predict	the
yield	of	different	soybean	varieties,	which	demonstrated	superior	performances	over	conventional	regression	algorithms.	Romero	et	al.	(2013)	applied	decision	tree	and	association	rule	mining	to	classify	yield	components	of	durum	wheat.	In	this	paper,	we	use	deep	neural	networks	to	predict	yield,	check	yield,	and	yield	difference	of	corn	hybrids	from
genotype	and	environment	data.	Deep	neural	networks	belong	to	the	class	of	representation	learning	models	that	can	find	the	underlying	representation	of	data	without	handcrafted	input	of	features.	Deep	neural	networks	have	multiple	stacked	non-linear	layers	which	transform	the	raw	input	data	into	higher	and	more	abstract	representation	at	each
stacked	layer	(LeCun	et	al.,	2015).	As	such,	as	the	network	grows	deeper,	more	complex	features	are	extracted	which	contribute	to	the	higher	accuracy	of	results.	Given	the	right	parameters,	deep	neural	networks	are	known	to	be	universal	approximator	functions,	which	means	that	they	can	approximate	almost	any	function,	although	it	may	be	very
challenging	to	find	the	right	parameters	(Hornik	et	al.,	1990;	Goodfellow	et	al.,	2016).	Compared	with	the	aforementioned	neural	network	models	in	the	literature,	which	were	shallow	networks	with	a	single	hidden	layer,	deep	neural	networks	with	multiple	hidden	layers	are	more	powerful	to	reveal	the	fundamental	non-linear	relationship	between
input	and	response	variables	(LeCun	et	al.,	2015),	but	they	also	require	more	advanced	hardware	and	optimization	techniques	to	train.	For	example,	the	neural	network's	depth	(number	of	hidden	layers)	has	significant	impact	on	its	performance.	Increasing	the	number	of	hidden	layers	may	reduce	the	classification	or	regression	errors,	but	it	may	also
cause	the	vanishing/exploding	gradients	problem	that	prevents	the	convergence	of	the	neural	networks	(Bengio	et	al.,	1994;	Glorot	and	Bengio,	2010;	He	et	al.,	2016).	Moreover,	the	loss	function	of	the	deep	neural	networks	is	highly	non-convex	due	to	having	numerous	non-linear	activation	functions	in	the	network.	As	a	result,	there	is	no	guarantee
on	the	convergence	of	any	gradient	based	optimization	algorithm	applied	on	neural	networks	(Goodfellow	et	al.,	2016).	There	have	been	many	attempts	to	solve	the	gradient	vanishing	problem,	including	normalization	of	the	input	data,	batch	normalization	technique	in	intermediate	layers,	stochastic	gradient	descent	(SGD)	(LeCun	et	al.,	1998;	Ioffe
and	Szegedy,	2015),	and	using	multiple	loss	functions	for	intermediate	layers	(Szegedy	et	al.,	2015).	However,	none	of	these	approaches	would	be	effective	for	very	deep	networks.	He	et	al.	(2016)	argued	that	the	biggest	challenge	with	deep	neural	networks	was	not	overfitting,	which	can	be	addressed	by	adding	regularization	or	dropout	to	the
network	(Srivastava	et	al.,	2014),	but	it	was	the	structure	of	the	network.	They	proposed	a	new	structure	for	deep	neural	networks	using	identity	blocks	or	residual	shortcuts	to	make	the	optimization	of	deeper	networks	easier	(He	et	al.,	2016).	These	residual	shortcuts	act	like	a	gradient	highway	throughout	the	network	and	prevent	vanishing	gradient
problem.	Deep	learning	models	have	recently	been	used	for	crop	yield	prediction.	You	et	al.	(2017)	used	deep	learning	techniques	such	as	convolutional	neural	networks	and	recurrent	neural	networks	to	predict	soybean	yield	in	the	United	States	based	on	a	sequence	of	remotely	sensed	images	taken	before	the	harvest.	Their	model	outperformed
traditional	remote-sensing	based	methods	by	15%	in	terms	of	Mean	Absolute	Percentage	Error	(MAPE).	Russello	(2018)	used	convolutional	neural	networks	for	crop	yield	prediction	based	on	satellite	images.	Their	model	used	3-dimensional	convolution	to	include	spatiotemporal	features,	and	outperformed	other	machine	learning	methods.	The
remainder	of	this	paper	is	organized	as	follows.	Section	2	describes	the	data	used	in	this	research.	Section	3	provides	a	detailed	description	of	our	deep	neural	networks	for	yield	prediction.	Section	4	presents	the	results	of	our	model.	Section	5	describes	the	feature	selection	method.	Finally,	we	conclude	the	paper	in	section	6.	2.	Data	In	the	2018
Syngenta	Crop	Challenge	(Syngenta,	2018),	participants	were	asked	to	use	real-world	data	to	predict	the	performance	of	corn	hybrids	in	2017	in	different	locations.	The	dataset	included	2,267	experimental	hybrids	planted	in	2,247	of	locations	between	2008	and	2016	across	the	United	States	and	Canada.	Most	of	the	locations	were	across	the	United
States.	This	was	one	of	the	largest	and	most	comprehensive	datasets	that	were	publicly	available	for	research	in	yield	prediction,	which	enabled	the	deployment	and	validation	of	the	proposed	deep	neural	network	model.	Figure	1	shows	the	distribution	of	hybrids	across	the	United	States.	Figure	1.	Hybrids	locations	across	the	United	States.	Data
collected	from	the	2018	Syngenta	Crop	Challenge	Syngenta	(2018).	The	training	data	included	three	sets:	crop	genotype,	yield	performance,	and	environment	(weather	and	soil).	The	genotype	dataset	contained	genetic	information	for	all	experimental	hybrids,	each	having	19,465	genetic	markers.	The	yield	performance	dataset	contained	the	observed
yield,	check	yield	(average	yield	across	all	hybrids	of	the	same	location),	and	yield	difference	of	148,452	samples	for	different	hybrids	planted	in	different	years	and	locations.	Yield	difference	is	the	difference	between	yield	and	check	yield,	and	indicates	the	relative	performance	of	a	hybrid	against	other	hybrids	at	the	same	location	(Marko	et	al.,
2017).	The	environment	dataset	contained	8	soil	variables	and	72	weather	variables	(6	weather	variables	measured	for	12	months	of	each	year).	The	soil	variables	included	percentage	of	clay,	silt	and	sand,	available	water	capacity	(AWC),	soil	pH,	organic	matter	(OM),	cation-exchange	capacity	(CEC),	and	soil	saturated	hydraulic	conductivity	(KSAT).
The	weather	data	provided	in	the	2018	Syngenta	Crop	Challenge	were	normalized	and	anonymized.	Based	on	the	pattern	of	the	data,	we	hypothesized	that	they	included	day	length,	precipitation,	solar	radiation,	vapor	pressure,	maximum	temperature,	and	minimum	temperature.	Part	of	the	challenge	was	to	predict	the	2017	weather	variables	and	use
them	for	yield	prediction	of	the	same	year.	The	goal	of	the	2018	Syngenta	Crop	Challenge	was	to	predict	the	performance	of	corns	in	2017,	but	the	ground	truth	response	variables	for	2017	were	not	released	after	the	competition.	In	this	paper,	we	used	the	2001–2015	data	and	part	of	the	2016	data	as	the	training	dataset	(containing	142,952	samples)
and	the	remaining	part	of	the	2016	data	as	the	validation	dataset	(containing	5,510	samples).	All	validation	samples	were	unique	combinations	of	hybrids	and	locations,	which	did	not	have	any	overlap	with	training	data.	3.	Methodology	3.1.	Data	Preprocessing	The	genotype	data	were	coded	in	{−1,	0,	1}	values,	respectively	representing	aa,	aA,	and
AA	alleles.	Approximately	37%	of	the	genotype	data	had	missing	values.	To	address	this	issue,	we	used	a	two-step	approach	to	preprocess	the	genotype	data	before	they	can	be	used	by	the	neural	network	model.	First,	we	used	a	97%	call	rate	to	discard	genetic	markers	whose	non-missing	values	were	below	this	call	rate.	Then	we	also	discarded
genetic	markers	whose	lowest	frequent	allele's	frequency	were	below	1%,	since	these	markers	were	less	heterozygous	and	therefore	less	informative.	As	a	result,	we	reduced	the	number	of	genetic	markers	from	19,465	to	627.	To	impute	the	missing	data	in	the	remaining	part	of	the	genotype	data,	we	tried	multiple	imputation	techniques,	including
mean,	median,	and	most	frequent	(Allison,	2001),	and	found	that	the	median	approach	led	to	the	most	accurate	predictions.	The	yield	and	environment	datasets	were	complete	and	did	not	have	missing	data.	3.2.	Weather	Prediction	Weather	prediction	is	an	inevitable	part	of	crop	yield	prediction,	because	weather	plays	an	important	role	in	yield
prediction	but	it	is	unknown	a	priori.	In	this	section,	we	describe	our	approach	for	weather	prediction	and	apply	it	to	predict	the	2016	weather	variables	using	the	2001–2015	weather	data.	Let	Xl,yw	denote	the	weather	variable	w	at	location	l	in	year	y,	for	all	w	∈	{1,	…,	72},	l	∈	{1,	…,	2247},	and	y	∈	{2001,	…,	2016}.	To	predict	the	2016	weather
variables	using	historical	data	from	2001	to	2015,	we	trained	72	shallow	neural	networks	for	the	72	weather	variables,	which	were	used	across	all	locations.	There	were	two	reasons	for	the	aggregation	of	2,247	locations:	(1)	the	majority	of	the	locations	were	in	the	middle	west	region,	so	it	was	reasonable	to	make	the	simplifying	assumption	that	the
prediction	models	were	uniform	across	locations,	(2)	combining	historical	data	for	all	locations	allows	sufficient	data	to	train	the	72	neural	networks	more	accurately.	For	each	weather	variable	w,	the	neural	network	model	explains	the	weather	variable	Xl,yw	at	location	l	in	year	y	as	a	response	of	four	previous	years	at	the	same	location:	{Xl,y-1w,Xl,y-
2w,Xl,y-3w,Xl,y-4w}.	We	have	tried	other	parameters	for	the	periodic	lag	and	found	4	years	to	yield	the	best	results.	As	such,	there	were	24,	717	samples	of	training	data	for	each	weather	variable.	The	resulting	parameters	of	the	networks	were	then	used	to	predict	Xl,y=2016w	using	historical	data	of	Xl,y=2012w	to	Xl,y=2015w	for	all	l	and	w.	The
structure	of	a	shallow	neural	network	is	given	in	Figure	2.	Figure	2.	Neural	network	structure	for	weather	prediction	with	a	4-year	lag.	The	reason	for	using	neural	networks	for	weather	prediction	is	that	neural	networks	can	capture	the	nonlinearities,	which	exist	in	the	nature	of	weather	data,	and	they	learn	these	nonlinearities	from	data	without
requiring	the	nonlinear	model	to	be	specified	before	estimation	(Abhishek	et	al.,	2012).	Similar	neural	network	approaches	have	also	been	used	for	other	weather	prediction	studies	(Maqsood	et	al.,	2004;	Bustami	et	al.,	2007;	Baboo	and	Shereef,	2010;	Kaur	et	al.,	2011;	Abhishek	et	al.,	2012;	Bou-Rabee	et	al.,	2017).	3.3.	Yield	Prediction	Using	Deep
Neural	Networks	We	trained	two	deep	neural	networks,	one	for	yield	and	the	other	for	check	yield,	and	then	used	the	difference	of	their	outputs	as	the	prediction	for	yield	difference.	These	models	are	illustrated	in	Figure	3.	This	model	structure	was	found	to	be	more	effective	than	using	one	single	neural	network	for	yield	difference,	because	the
genotype	and	environment	effects	are	more	directly	related	to	the	yield	and	check	yield	than	their	difference.	Figure	3.	Neural	networks	designed	for	predicting	yield	difference.	The	following	hyperparameters	were	used	in	the	training	process.	Each	neural	network	has	21	hidden	layers	and	50	neurons	in	each	layer.	After	trying	deeper	network
structures,	these	dimensions	were	found	to	provide	the	best	balance	between	prediction	accuracy	and	limited	overfitting.	We	initialized	all	weights	with	the	Xavier	initialization	method	(Glorot	and	Bengio,	2010).	We	used	SGD	with	a	mini-batch	size	of	64.	The	Adam	optimizer	was	used	with	a	learning	rate	of	0.03%,	which	was	divided	by	2	every
50,000	iterations	(Kingma	and	Ba,	2014).	Batch	normalization	was	used	before	activation	for	all	hidden	layers	except	the	first	hidden	layer.	Models	were	trained	for	300,000	maximum	iterations.	Residual	shortcuts	were	used	for	every	two	stacked	hidden	layers	(He	et	al.,	2016).	We	used	maxout	activation	(Goodfellow	et	al.,	2016)	function	for	all
neurons	in	the	networks	except	for	the	output	layer,	which	did	not	have	any	activation	function.	In	order	to	avoid	overfitting,	we	used	the	L2	regularization	(Ng,	2004)	for	all	hidden	layers.	We	also	added	L1	regularization	(Ng,	2004)	to	the	first	layer	to	decrease	the	effect	of	redundant	features,	as	in	Lasso	(Tibshirani,	1996).	Figure	4	depicts	the
detailed	structure	of	the	deep	neural	network,	which	was	the	same	for	yield	and	check	yield	prediction.	Figure	4.	Deep	neural	network	structure	for	yield	or	check	yield	prediction.	The	input	layer	takes	in	genotype	data	(G	∈	ℤn×p),	weather	data	(W∈ℝn×k1),	and	soil	data	(S∈ℝn×k2)	as	input.	Here,	n	is	the	number	of	observations,	p	is	the	number	of
genetic	markers,	k1	is	the	number	of	weather	components,	and	k2	is	the	number	of	soil	conditions.	Odd	numbered	layers	have	a	residual	shortcut	connection	which	skips	one	layer.	Each	sample	is	fed	to	the	network	as	a	vector	with	dimension	of	ℝp+k1+k2.	4.	Results	The	two	deep	neural	networks	were	implemented	in	Python	using	the	Tensorflow
open-source	software	library	(Abadi	et	al.,	2016).	The	training	process	took	approximately	1.4	h	on	a	Tesla	K20m	GPU	for	each	neural	network.	We	also	implemented	three	other	popular	prediction	models	for	comparison:	The	least	absolute	shrinkage	and	selection	operator	(Lasso),	shallow	neural	network	(having	a	single	hidden	layer	with	300
neurons),	and	regression	tree	(Breiman,	2017).	To	ensure	fair	comparisons,	two	sets	of	these	three	models	were	built	to	predict	yield	and	check	yield	separately,	and	the	differences	of	their	outputs	were	used	as	the	prediction	for	the	yield	difference.	All	of	these	models	were	implemented	in	Python	in	the	most	efficient	manner	that	we	were	capable	of
and	tested	under	the	same	software	and	hardware	environments	to	ensure	fair	comparisons.	The	following	hyperparameters	were	used	for	the	regression	tree.	The	maximum	depth	of	the	tree	was	set	to	10	to	avoid	overfitting.	We	set	the	minimum	number	of	samples	required	to	split	an	internal	node	of	tree	to	be	2.	All	features	were	used	to	train	the
regression	tree.	We	tried	different	values	for	the	coefficient	of	L1	term	(Ng,	2004)	in	the	Lasso	model,	and	found	that	values	between	0.1	and	0.3	led	to	the	most	accurate	predictions.	Table	1	compares	the	performances	of	the	four	models	on	both	training	and	validation	datasets	with	respect	to	the	RMSE	and	correlation	coefficient.	These	results
suggest	that	the	deep	neural	networks	outperformed	the	other	three	models	to	varying	extents.	The	weak	performance	of	Lasso	was	mainly	due	to	its	linear	model	structure,	which	ignored	epistatic	or	G	×	E	interactions	and	the	apparent	nonlinear	effects	of	environmental	variables.	SNN	outperformed	Lasso	on	all	the	performance	measures	except
validation	RMSE	of	the	yield	difference,	since	it	was	able	to	capture	nonlinear	effects.	As	a	non-parametric	model,	RT	demonstrated	comparable	performance	with	SNN	with	respect	to	yield	and	check	yield	but	was	much	worse	with	respect	to	the	yield	difference.	DNN	outperformed	all	of	the	three	benchmark	models	with	respect	to	almost	all
measures;	the	only	exception	was	that	SNN	had	a	better	performance	for	the	training	dataset	but	worse	for	the	validation	dataset,	which	was	a	sign	of	overfitting.	The	DNN	model	was	particularly	effective	in	predicting	yield	and	check	yield,	with	RMSE	for	the	validation	dataset	being	approximately	11%	of	their	respective	average	values.	The
accuracy	for	the	check	yield	was	a	little	higher	than	that	for	the	yield	because	the	former	is	the	average	yield	across	all	hybrids	and	all	years	for	the	same	location,	which	is	easier	to	predict	than	the	yield	for	individual	hybrid	at	a	specific	location	in	a	specific	year.	The	model	struggled	to	achieve	the	same	prediction	accuracy	for	yield	difference	as	for
the	other	two	measures,	although	it	was	still	significantly	better	than	the	other	three	benchmark	models.	The	Lasso's	performance	seemed	good	for	the	yield	difference	with	respect	to	RMSE,	but	it	had	a	low	correlation	coefficient.	This	happened	because	Lasso's	prediction	was	much	centralized	around	the	mean	which	may	increase	the	risk	of	getting
high	prediction	error	on	other	test	data.	Let	y,	yc,	and	yd	denote	yield,	check	yield,	and	yield	difference,	respectively.	Then,	the	variance	of	yield	difference	can	be	defined	as	Table	1.	Prediction	performance	with	ground	truth	weather	variables.	Equation1.	As	shown	in	Equation	1,	the	yield	difference	was	more	difficult	to	predict	since	its	variation
depends	on	not	only	the	individual	variances	of	yield	and	check	yield	but	also	their	covariance.	Var(yd)=Var(y-yc)=Var(y)+Var(yc)-2Cov(y,yc)				(1)	To	examine	the	yield	prediction	error	for	individual	regions,	we	obtained	prediction	error	across	244	locations	existed	in	the	validation	dataset.	As	shown	in	Figure	5,	the	prediction	error	was	consistently
low	(RMSE	below	15)	for	most	of	locations	(207	locations).	Figure	5.	The	yield	prediction	error	for	individual	regions	in	the	validation	dataset.	The	map	shows	the	validation	locations	across	the	United	States.	We	plotted	the	probability	density	functions	of	the	ground	truth	yield	and	the	predicted	yield	by	the	DNN	model	to	see	if	the	DNN	model	can
preserve	the	distributional	properties	of	the	ground	truth	yield.	As	shown	in	Figure	6,	the	DNN	model	can	approximately	preserve	the	distributional	properties	of	the	ground	truth	yield.	However,	the	variance	of	the	predicted	yield	is	less	than	the	variance	of	the	ground	truth	yield,	which	indicates	DNN	model's	prediction	was	more	centralized	around
mean.	Figure	6.	The	probability	density	functions	of	the	ground	truth	yield	and	the	predicted	yield	by	DNN	model.	The	plots	indicate	that	DNN	model	can	approximately	preserve	the	distributional	properties	of	the	ground	truth	yield.	To	evaluate	the	effects	of	weather	prediction	on	the	performance	of	the	DNN	model,	we	obtained	prediction	results
using	the	predicted	weather	data	rather	than	the	ground	truth	weather	data.	As	shown	in	Table	2,	the	prediction	accuracy	of	DNN	deteriorated	compared	to	the	corresponding	results	in	Table	1,	which	suggested	how	sensitive	yield	prediction	is	to	weather	prediction	and	the	extent	to	which	a	perfect	weather	prediction	model	would	improve	the	yield
prediction	results.	Table	2.	Prediction	performance	with	predicted	weather	variables.	5.	Analysis	5.1.	Importance	Comparison	Between	Genotype	and	Environment	To	compare	the	individual	importance	of	genotype,	soil	and	weather	components	in	the	yield	prediction,	we	obtained	the	yield	prediction	results	using	following	models:	DNN(G):	This
model	uses	the	DNN	model	to	predict	the	phenotype	based	on	the	genotype	data	(without	using	the	environment	data),	which	is	able	to	capture	linear	and	nonlinear	effects	of	genetic	markers.	DNN(S):	This	model	uses	the	DNN	model	to	predict	the	phenotype	based	on	the	soil	data	(without	using	the	genotype	and	weather	data),	which	is	able	to
capture	linear	and	nonlinear	effects	of	soil	conditions.	DNN(W):	This	model	uses	the	DNN	model	to	predict	the	phenotype	based	on	the	weather	data	(without	using	the	genotype	and	soil	data),	which	is	able	to	capture	linear	and	nonlinear	effects	of	weather	components.	Average:	This	model	provides	a	baseline	using	only	the	average	of	phenotype	for
prediction.	Table	3	compares	the	performances	of	the	above	4	models	in	the	yield	prediction.	The	results	suggested	that	DNN(W)	and	DNN(S)	had	approximately	the	same	performance	and	their	prediction	accuracies	were	significantly	higher	than	DNN(G),	which	revealed	that	the	environmental	(weather	and	soil)	components	explained	more	of	the
variation	within	the	crop	yield	compared	to	genotype.	Table	3.	Yield	prediction	performances	of	DNN(G),	DNN(S),	DNN(W),	and	Average	model.	5.2.	Feature	Selection	Genotype	and	environment	data	are	often	represented	by	many	variables,	which	do	not	have	equal	effect	or	importance	in	yield	prediction.	As	such,	it	is	vital	to	find	important	variables
and	omit	the	other	redundant	ones	which	may	decrease	the	accuracy	of	predictive	models.	In	this	paper,	we	used	guided	backpropagation	method	which	backpropagates	the	positive	gradients	to	find	input	variables	which	maximize	the	activation	of	our	interested	neurons	(Springenberg	et	al.,	2014).	As	such,	it	is	not	important	if	an	input	variable
suppresses	a	neuron	with	negative	gradient	somewhere	along	the	path	to	our	interested	neurons.	First,	we	fed	all	validation	samples	to	the	DNN	model	and	computed	the	average	activation	of	all	neurons	in	the	last	hidden	layer	of	the	network.	We	set	the	gradient	of	activated	neurons	to	be	1	and	the	other	neurons	to	be	0.	Then,	the	gradients	of	the
activated	neurons	were	backpropagated	to	the	input	space	to	find	the	associated	input	variables	based	on	the	magnitude	of	the	gradient	(the	bigger,	the	more	important).	Figures	7–9	illustrate	the	estimated	effects	of	genetic	markers,	soil	conditions,	and	weather	components,	respectively.	The	estimated	effects	indicate	the	relative	importance	of	each
feature	compared	to	the	other	features.	The	effects	were	normalized	within	each	group	namely,	genetic	markers,	soil	conditions,	and	weather	components	to	make	the	effects	comparable.	Figure	7.	Bar	plot	of	estimated	effects	of	627	genetic	markers.	Figure	8.	Bar	plot	of	estimated	effects	of	8	soil	conditions.	AWC,	OM,	CEC,	and	KSAT	stand	for
available	water	capacity,	organic	matter,	cation	exchange	capacity,	and	saturated	hydraulic	conductivity,	respectively.	The	Bar	plot	indicates	that	percentage	of	clay	and	soil	pH	were	more	important	than	the	other	soil	conditions.	Figure	9.	Bar	plot	of	estimated	effects	of	6	weather	components	measured	for	12	months	of	each	year,	starting	from
January.	The	vertical	axes	were	normalized	across	all	weather	components	to	make	the	effects	comparable.	As	shown	in	Figure	9,	solar	radiation	and	temperature	have	considerable	effects	on	the	variation	in	corn	yield	across	different	environments.	High	corn	yield	is	associated	with	low	temperature	and	high	solar	radiation	since	lower	temperature
increases	growth	duration,	thus	crops	can	intercept	more	radiation	(Muchow	et	al.,	1990).	Precipitation	is	an	important	factor.	Hu	and	Buyanovsky	(2003)	found	that	high	corn	yield	was	associated	with	less	rainfall	in	the	planting	period,	and	above-average	rainfall	throughout	May,	when	seed	germination	and	emergence	happened.	More	rainfall	with
cooler	temperatures	were	also	necessary	from	June	through	August,	followed	by	less	rainfall	and	higher	temperatures	in	the	September	early	October	period.	The	amount	of	vapor	pressure	during	growing	season	has	impact	on	the	variation	in	the	potential	corn	yield	since	high	vapor	pressure	can	cause	yield	loss	in	corns	(Zhang	et	al.,	2017).	To
evaluate	the	performance	of	the	feature	selection	method,	we	obtained	prediction	results	based	on	a	subset	of	features.	As	such,	we	sorted	the	all	features	based	on	their	estimated	effects,	and	selected	50	most	important	genetic	markers	and	20	most	important	environmental	components.	Table	4	shows	the	yield	prediction	performance	of	DNN	model
using	these	selected	features.	The	prediction	accuracy	of	DNN	did	not	drop	significantly	compared	to	the	corresponding	results	in	Table	1,	which	suggested	the	feature	selection	method	can	successfully	find	the	important	features.	Table	4.	Yield	prediction	performance	of	DNN	on	the	subset	of	features.	6.	Conclusion	We	presented	a	machine	learning
approach	for	crop	yield	prediction,	which	demonstrated	superior	performance	in	the	2018	Syngenta	Crop	Challenge	using	large	datasets	of	corn	hybrids.	The	approach	used	deep	neural	networks	to	make	yield	predictions	(including	yield,	check	yield,	and	yield	difference)	based	on	genotype	and	environment	data.	The	carefully	designed	deep	neural
networks	were	able	to	learn	nonlinear	and	complex	relationships	between	genes,	environmental	conditions,	as	well	as	their	interactions	from	historical	data	and	make	reasonably	accurate	predictions	of	yields	for	new	hybrids	planted	in	new	locations	with	known	weather	conditions.	Performance	of	the	model	was	found	to	be	relatively	sensitive	to	the
quality	of	weather	prediction,	which	suggested	the	importance	of	weather	prediction	techniques.	A	major	limitation	of	the	proposed	model	is	its	black	box	property,	which	is	shared	by	many	machine	learning	methods.	Although	the	model	captures	G	×	E	interactions,	its	complex	model	structure	makes	it	hard	to	produce	testable	hypotheses	that	could
potentially	provide	biological	insights.	To	make	the	model	less	of	a	black	box,	we	performed	feature	selection	based	on	the	trained	DNN	model	using	backpropagation	method.	The	feature	selection	approach	successfully	found	important	features,	and	revealed	that	environmental	factors	had	a	greater	effect	on	the	crop	yield	than	genotype.	Our	future
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